

SUSY Search Prospects at CMS

Shuichi Kunori U of Maryland 10-June-2003

LHC and CMS
Physics Selection (Trigger)
MSSM Higgs
SUSY Spectroscopy
Conclusions

The LHC

R = 4.5 Km E = 7+7 TeV (pp)

crossing rate =40MHz (25nsec)

design luminosity = 10³⁴cm⁻²s⁻¹

~20 pp interactions per crossing at design luminosity

 $h \rightarrow 4 \mu$ with 20 min. bias evt.

The CMS detector

Toal weight 12500 t Overall diameter 15 m Overall length 21.6 m All silicon tracker micro strips (10M ch) pixel (40M ch)

(5.4m long, 2.4m Φ : $|\eta|$ < 2.4)

Hermetic calorimeter ECAL: PbWO4 crystal HCAL: brass+scinti. (|n| <3.0)

in 4 Tesla solenoid

(12.5m long, $6m \Phi in$)

Robust muon system DT+RPC (barrel) CSC+RPC (endcap)

(in iron yoke: $|\eta|$ <2.4)

Fast cerenkov calor. quartz fibber

 $(3<|\eta|<5)$

HCAL barrel

Surface buildings and main shaft

Installation of the first muon chamber

Transfer YB0 (2000t) in 2005

Physics Selection

Example: τ trigger

Level-1: calorimeter based

Look for narrow jets in pattern in
the calorimeter towers.

HLT (L2): two options

- a) using calorimeter -purify narrow jet with fine grain ECAL .
- b) using pixel tracker- look for isolated track(s) in L1 jet cone

HLT (L3): pixel and silicon strips tracker Regional tracking - reconstruct track(s) in L2 jet cone. Six hits are enough for good momentum resolution.

> H/A(200GeV) \rightarrow ττ eff =45% with QCD rejection ~ 10⁶

Offline(L4): full detector information (e.g. decay vertex)

CMS Trigger is very flexible!

HLT for Low Luminosity 2x10³³ cm⁻²s⁻¹

Results from full detector and trigger simulation – 7M events used in 2001-02.

Trigger	Threshold (GeV or GeV/c)	Rate (Hz)	Cuml. rate (Hz)				
Inclusive electron	29	33	33				
Di-electron	17	1	34				
Inclusive photon	80	4	38				
Di-photon	40, 25	5	43				
Inclusive muon	19	25	68				
Di-muon	7	4	72				
Inclusive tau-jet	86	3	75				
Di-tau-jet	59	1	76				
1-jet * E _T ^{miss}	180 * 123	5	81				
1-jet OR 3-jet OR 4-jet	657, 247, 113	9	89				
Electron * jet	19 * 45	2	90				
Inclusive b-jet	237	5	95				
Calibration etc		10	105				
TOTAL	TOTAL 105						

CMS DAQ TDR, Dec. 2002 (CERN/LHCC 2002-26)

HLT performance — signal efficiency

With previous selection cuts for low luminosity.

Channel	Efficiency				
	(for fiducial objects)				
<i>H</i> (115 GeV)→γγ	77%				
<i>H</i> (160 GeV)→WW* →2µ	92%				
<i>H</i> (150 GeV)→ZZ→4μ	98%				
A/H(200 GeV)→2τ	45%				
SUSY (~0.5 TeV sparticles)	~60%				
With R _P -violation	~20%				
<i>W</i> →e <i>v</i>	67% (fid: 60%)				
$W\rightarrow \mu \nu$	69% (fid: 50%)				
Τορ → <i>μ</i> X	72%				

Good efficiencies for low mass (100-200GeV) objects!

LHC Start up

April 2007 LHC beam starts (4 months)

shut down (2-3 months)

Mid-07
First physics run
(~7 months)
5-10fb⁻¹
at 1-2 x 10³³cm⁻² s⁻¹

:

Full luminosity run 100fb⁻¹/year at 10³⁴cm⁻² s⁻¹

SM Higgs Discovery Range

MSSM light Higgs 5σ discovery region (30 fb⁻¹)

All most covered!

Need 100fb⁻¹ for full coverage.

H⁰/A and H⁺

- neutral Production at high tanβ
gg →bbH⁰

Decay modes bb dominant but large BG

> ττ BR~10% 2nd major mode

μμ BR~4x10⁻³ small, but clean

→ Good b-tagging

- charged Production
gg → tbH+
gb → tH+

Decay modes tb dominant m>200GeV

τν BR~10% at m=400GeV

Reconstructed Mass

(See "Higgs Physics at LHC: R. Kinnunen's plenary talk at SUSY 2002)

Higgs in SUSY Cascades

(Examples)

Njets>5 ET(J1)>300GeV MET>150GeV M(Jets+MET)>1200GeV Two b-taggs

$S/\sqrt{B} > 5$

Squarks and Gluino mass reach

SUSY will be found quickly!

SUSY Spectroscopy

An exercise at two points using a fast parameterized simulation.

Post LEP SUSY benchmark points: M.Battaglia et al. Eur Phys. J (2001) 535 (hep-ph/0106204)

Model	A	В	С	D	E	F	G	Н	I	J	K	L	M
$m_{1/2}$	600	250	400	525	300	1000	375	1500	350	750	1150	450	1900
m_0	140	100	90	125	1500	3450	120	419	180	300	1000	350	1500
aneta	5	10	10	10	10	10	20	20	35	35	35	50	50
$\operatorname{sign}(\mu)$	+	+	+	_	+	+	+	+	+	+	_	+	+
$lpha_s(m_Z)$	120	123	121	121	123	120	122	117	122	119	117	121	116
m_t	175	175	175	175	171	171	175	175	175	175	175	175	175

Sparticles reconstructed in 10fb⁻¹

Sparticles reconstructed in 300fb⁻¹

 $m_{1/2}$

Point B

g	595.1	$t_{ m L}$	392.9
$\mathbf{b_L}$	496.0	t _R	575.9
$\mathbf{b}_{\mathbf{R}}$	524.0	X 4 ⁰	361.1
\mathbf{q}_{L}	540	X ₃ ⁰	339.9
q_R	520	χ_2^0	174.4
$\mathbf{l_L}$	196.5	χ_2^{\pm}	361.6
l_R	136.2	χ_1^{\pm}	173.8
		$\chi_1^0 = LSP$	95.6

$$\sigma_{SUSY}^{TOT} = 57.77 \text{ pb}$$

499.4 +/- 6.6 GeV

edge 78.9 +/- 2.1 GeV

Point G

- heavier sparticles: M(squark) ≅ 800 GeV, M(gluino) ≅ 900 GeV
- lower SUSY cross section (6 pb)
- higher tanβ: smaller BR to electrons and muons. More to taus.
- → Need higher statistcis.

 $M(\widetilde{\chi}_2^0 q) = 767 \pm 6 \text{ GeV}$ $\sigma = 80 \text{ GeV}$

gluino

Generated: $M(d_L)=M(s_L)=778.0 \text{ GeV}$ $M(u_L)=M(c_L)=773.9 \text{ GeV}$

M(g)=860.8 GeV

Conclusions

Machine, Experiment, computing.

"April 2007 is the target. Physics will flow rapidly afterward."

R.J. Cashmore, Director of Research, CERN.

A large discovery potential with 5-10fb⁻¹ data in the first physics run.

We have developed efficient algorithms for Level 1 and High Level Trigger. The trigger is flexible and can be easily re-tuned for new physics.

Large m_A – $tan\beta$ space can be explored with 30 fb⁻¹ in the MSSM Higgs boson search. Need 100 fb⁻¹ to cover the full space.

Discovery of SUSY, if it exists, is almost assured at the LHC. Inclusive mSUGURA squark/gluino discovery reach to 1.5TeV with 1fb⁻¹ and 2.5TeV with 100 fb⁻¹.

We have performed prototype analyses of SUSY particle spectroscopy. The results are promising. More detailed and extended studies will be done with full detector simulation and event reconstruction.

Physics at the LHC will be exciting!